Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

E Yang* and Fa-Fu Yang

College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, People's Republic of China

Correspondence e-mail:
yangeli66@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.025$
$w R$ factor $=0.067$
Data-to-parameter ratio $=15.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
t-Phenylalaninium 4-sulfonate

In the crystal structure of the title compound $\left(\mathrm{H}_{2} \mathrm{SPA}\right)$, $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{5} \mathrm{~S}$, hydrogen-bonding interactions lead to the formation of a three-dimensional network

Comment

Recently, both Werner (1991) and Escher et al. (1983) reported the synthesis and characterization of the ligand 4-sulfo-L-phenylalanine ($\mathrm{H}_{2} \mathrm{SPA}$). Xie et al. (2002) reported its crystal structure but involving a water solvent molecule. Here we report the crystal structure of 4 -sulfo-L-phenylalanine in the zwitterionic form l-phenylalaninium 4-sulfonate, (I).

(I)

It is worth noting that the sulfonic acid H atom has moved to the amine group and this zwitterionic form of $\mathrm{H}_{2} \mathrm{SPA}$ in acidic solution favors the structure proposed by Escher et al. (1983). Fig. 1 shows a perspective view of the structure, which crystallizes in the monoclinic space group $P 2_{1}$. The asymmetric unit contains one molecule of (I).

Taking hydrogen bonding into account, $\mathrm{H}_{2} \mathrm{SPA}$ forms a three-dimensional network. As shown in Table 2, the carboxylic acid group and the protoned amine group act as hydrogen-bond donors and sulfonate O atoms act as hydrogen-bond acceptors. Four types of hydrogen bonds are formed, and they can be divided into two groups: two strong hydrogen-bonding interactions [O5 $\cdots \mathrm{O} 1=2.6438$ (19) and $\mathrm{N} 1 \cdots \mathrm{O} 1=2.7861$ (19) \AA] and two weak hydrogen-bonding

Figure 1
A view of (I) with 30% probability displacement ellipsoids; H atoms are shown as small spheres of arbitrary radii.
interactions $[\mathrm{N} 1 \cdots \mathrm{O} 3=2.929(2)$ and $\mathrm{N} 1 \cdots \mathrm{O} 3=$ 2.8607 (18) A]. As shown in Fig. 2, a two-dimensional layer is formed by the two strong hydrogen-bonding interactions. The resulting layers are further linked by the two weak hydrogenbonding interactions to complete the three-dimensional network.

Experimental

Crystals of (I) suitable for X-ray analysis were obtained from a 15 ml aqueous solution of 1 mmol 4 -sulfo-L-phenylalanine powder.

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{5} \mathrm{~S}$
$M_{r}=245.25$
Monoclinic, $P 2_{1}$
$a=5.6357(16) \AA$
$b=9.177(3) \AA$
$c=10.308(3) \AA$
$\beta=98.950(4)^{\circ}$ 。
$V=526.6(3) \AA^{3}$

Data collection

Bruker CCD area-detector
diffractometer
φ and ω scans
Absorption correction: multi-scan
CrystalClear (Rigaku/MSC, 2004)
$T_{\text {min }}=0.945, T_{\text {max }}=0.975$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0432 P)^{2}\right. \\
& \quad+0.0703 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.30 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.28 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Absolute structure: Flack (1983),
965 Friedel pairs
Flack parameter: -0.06 (6)

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

S1-O2	$1.4397(13)$	S1-O1	$1.4782(12)$
S1-O3	$1.4632(12)$	S1-C1	$1.7730(16)$
O2-S1-O3	$113.64(7)$	O2-S1-C1	$107.93(7)$
O2-S1-O1	$112.72(7)$	O3-S1-C1	$106.38(7)$
O3-S1-O1	$110.31(7)$	O1-S1-C1	$105.27(7)$

Table 2

Hydrogen-bond geometry ($\left({ }_{\mathrm{A}},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 5 \cdots \mathrm{O}^{\mathrm{i}}$	0.82	1.82	$2.6438(19)$	177
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{ii}}$	0.89	1.91	$2.7861(19)$	169
N1-H1B $\cdots \mathrm{O}^{\text {iii }}$	0.89	2.09	$2.929(2)$	157
N1-H1C $\cdots \mathrm{O}^{\text {iv }}$	0.89	2.06	$2.8607(18)$	149

Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z+1$; (ii) $x-1, y, z-1$; (iii) $-x+1, y-\frac{1}{2},-z+1$; (iv) $x, y, z-1$.

Figure 2
A view of the two-dimensional hydrogen-bonding network formed by two types of strong hydrogen bonds (dashed lines).

Figure 3
A view of the three-dimensional hydrogen-bonding (dashed lines) network.

All H atoms were placed at calculated positions and refined with isotropic displacement parameters, using a riding model $[\mathrm{C}-\mathrm{H}=$ $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}) ; \mathrm{N}-\mathrm{H}=0.89 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{N}) ; \mathrm{O}-\mathrm{H}=0.82 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})\right]$.

Data collection: CrystalClear (Rigaku/MSC, 2004); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Siemens, 1994); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

Escher, E., Bernier, M. \& Parent, P. (1983). Helv. Chim. Acta, 66, 1355-1361. Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Rigaku/MSC (2004). CrystalClear. Version 1.3.6. Rigaku/MSC Inc., The Woodlands, Texas, USA.
Siemens (1994). SHELXTL. Version 5. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Werner, S. (1991). Eur. Pat. Appl. EP 443, 598-602.
Xie, Y.-R., Xiong, R.-G., Xue, X., Chen, X.-T., Xue, Z. \& You, X.-Z. (2002). Inorg. Chem. 42, 3323-3326.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

